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SUMMARY

We investigate a special technique called ‘pressure separation algorithm’ (PSepA) (see Applied Mathematics
and Computation 2005; 165:275–290 for an introduction) that is able to significantly improve the accuracy
of incompressible flow simulations for problems with large pressure gradients. In our numerical studies
with the computational fluid dynamics package FEATFLOW (www.featflow.de), we mainly focus on low-
order Stokes elements with nonconforming finite element approximations for the velocity and piecewise
constant pressure functions. However, preliminary numerical tests show that this advantageous behavior can
also be obtained for higher-order discretizations, for instance, with Q2/P1 finite elements. We analyze the
application of this simple, but very efficient, algorithm to several stationary and nonstationary benchmark
configurations in 2D and 3D (driven cavity and flow around obstacles), and we also demonstrate its effect
to spurious velocities in multiphase flow simulations (‘static bubble’ configuration) if combined with
edge-oriented, resp., interior penalty finite element method stabilization techniques. Copyright q 2008
John Wiley & Sons, Ltd.
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1. MOTIVATION

The improvement in numerical simulation techniques for the incompressible Navier–Stokes equa-
tions w.r.t. accuracy, flexibility and robustness still belongs to the important and challenging
numerical tasks nowadays. Besides the search for ‘better’ LBB-stable approximations for pressure
and velocity, resp., corresponding stabilization techniques for the numerical treatment of higher
Reynolds numbers and for higher-order time discretizations, concepts for local adaptivity in space
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and time belong to the most common techniques, which are typically under research. In this
paper, we demonstrate as an alternative how to increase the resulting accuracy by a simple trick,
namely by ‘pressure separation algorithms’ (PSepA), which are designed for flow situations that
are dominated by the pressure gradient or higher-order pressure derivatives.

We illustrate the underlying idea, which was originally described in [1] and quite recently in the
paper [2], containing numerical results for problems with analytical solutions. In our contribution,
we demonstrate the advantageous behavior of this approach for more realistic computational fluid
dynamics (CFD) configurations and provide results from detailed numerical studies. To do so,
we focus on the (stationary) Navier–Stokes equations for an incompressible fluid in a bounded
domain �, which read as

u·∇u−��u+∇ p= f, divu=0 (1)

where u is the fluid velocity, p the pressure, � the kinematic viscosity, and f the body force.
Moreover, corresponding boundary conditions on �� have to be specified depending on the model
problems.

If, as usually, the norm in (L2(�))N ,N =2,3, is denoted by ‖·‖0,�, the norm in (Hk(�))N by
‖·‖k,� and the semi-norm in (Hk(�))N by |·|k,�, then the typical velocity error estimation for
approximating the Navier–Stokes equations with finite elements of order k for the velocity and
(at least) of order k−1 for the pressure can be expressed as follows (see [3])

h|u−uh |1,�+‖u−uh‖0,��Chk+1
{
|u|k+1,�+ 1

�
|p|k,�

}
(2)

where uh is the corresponding finite element approximation of (1). Now, consider the following
problem instead of (1) (see [2]):

u·∇u−��u+∇ p̃= f−∇ psep, divu=0 (3)

where psep is a given function, and p̃= p− psep. Then, the corresponding a priori error estimate
[2] reads as follows, which is the central observation for the following PSepA:

h|u−usep,h |1,�+‖u−usep,h‖0,��Chk+1
{
|u|k+1,�+ 1

�
|p− psep|k,�

}
(4)

Consequently, a significant improvement in the (a priori) error estimation is achieved if |p|k,�/�
is the dominant term in (2) and if |p− psep|k,� �|p|k,�. This situation typically occurs in flow
configurations that are dominated by the pressure gradient or for small viscosity parameters such
that the choice of psep as a sufficiently ‘good’ approximation of the original pressure in (1) is
desired. Typical variants for the choice of psep can be found in [2, 4]. Similar approaches, mostly
in the context of multiphase flow problems that require special treatment of discontinuous pressure
or in the case of pressure correction schemes, can be found in [5–11].

Here, we extend the prototypical studies in [2] by applying this approach in the finite element
method (FEM) context for stationary and nonstationary problems, which all are of prototypical
character, since they are based on typically well-known benchmark configurations on quite general
meshes and for different Reynolds numbers. Altogether, we believe that these numerical studies
elucidate the potential of this simple and cheap, but nevertheless effective, technique for a wide
range of complex CFD problems.
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PRESSURE SEPARATION ALGORITHMS 389

Figure 1. Singularity of the pressure for the ‘driven cavity’ configuration, together with the streamfunction
(top), and for ‘flow around a square’ (bottom).

Prototypical configurations in single-phase CFD simulations, which are candidates for such flows
with large pressure gradients, are problems with singularities, which are due to the geometry or
boundary conditions. For instance, driven cavity problems with pressure singularities (see Figure 1)
in the upper corners due to discontinuous boundary values for the velocity, or flow around obstacles
settings with large pressure derivatives or even singularities near corners (see Figure 1), are typical
flow settings that are natural candidates for pressure separation.

Another example is multiphase flow with surface tension as local external force, which in many
cases leads to a discontinuous pressure, such that large norms of pressure derivatives naturally
appear in a priori estimate (2). Moreover, spurious velocities appears near the interfaces (see
Figure 2)—which are not restricted only to such free interface problems (see [12])—such that
the question arises whether PSepA can improve the numerical accuracy and robustness in such
examples too. For further improvement of the FEM solution in this case, we will use local mesh
deformation techniques for grid alignment to accurately calculate the surface tension force and the
curvature, and we will combine them with edge-oriented FEM stabilization techniques [13] that
will essentially help to suppress such spurious oscillations (see Section 4).
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Figure 2. Pressure and resulting spurious velocity for a ‘static bubble’ configuration.

2. NUMERICAL AND ALGORITHMIC DETAILS

2.1. Discretization aspects

For the discretization, we consider a usual subdivision T ∈Th consisting of quadrilaterals/
hexahedrals in the domain �, and we employ the nonconforming rotated multilinear Q̃1/Q0 finite
element pair; however, the following algorithms can be applied to other finite element, finite differ-
ence or finite volume discretizations too. In our situation, the nodal values are the mean values
of the velocity vector over the element edges, resp., element faces, and the mean values of the
pressure over the elements (see [14] for more details).

There are two well-known situations for nonconforming FEM methods when severe numerical
problems may arise: Firstly, the lack of coercivity for low-order approximations for symmetric
deformation tensor formulations, mainly visible for small Re numbers. Secondly, for all standard
discretization schemes in the case of convection dominated problems, numerical difficulties arise
for instance for medium and high Re numbers or for the treatment of pure transport problems.
Then, the standard Galerkin formulation usually fails and may lead to numerical oscillations and to
convergence problems of the iterative solvers too (see [13, 15]). Among the stabilization methods
existing in the literature for these types of problems, we use the one proposed in [13, 16], which
is based on the penalization of the gradient jumps over element boundaries. In 2D, the additional
stabilization term Ju, acting only on the velocity u in the momentum equations, takes the following
form (with hE =|E |):

〈Ju,v〉= ∑
edge E

max(��hE ,�∗h2E )

∫
E
[∇u] : [∇v]ds (5)

and will be simply added to the original bilinear form in order to cure numerical instabilities
when computing incompressible flow problems using low-order nonconforming finite elements.
Moreover, only one generic stabilization term takes care of all mentioned instabilities (see [13]
for more details).

The original method presented in (5) was driven by the desire to cure both instabilities for
Korn’s inequality and convection domination inherent in the approximate solutions. This least-
squares term may be interpreted as a continuous high-order interior penalty method that can be
formulated as a global minimization of the quadratic formulation, derived from the Stokes problem,
for instance, with the constraint of the jump of the gradient being equal to zero. Hence, it can
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be seen as a manner of filtering the undesired spurious modes in the solution. Moreover, that
explains the adequate results in the limit of inviscid flow if the stabilization according to (5)
is applied (see [13] for the ‘standing vortex’ problem). Therefore, the objective is to generalize
the mesh-dependent penalty parameter in (5) to provide improvements for two-phase flows with
discontinuous pressure too.

2.2. Algorithmic realization of pressure separation

To reach where the semi-norm |p− psep|k is smaller than |p|k , we try to set psep as an approximate
solution to the unknown pressure p. This simply can be done by defining psep, for instance, via
appropriate interpolation of the discrete solution ph from the original problem (1). In the following,
we denote by ‘NS−1(g)’ the solution to a discretized incompressible Navier–Stokes problem, for
a given right-hand side g, by any method, for instance, using a fully coupled approach or pressure
correction, etc.

Then, the complete (stationary) PSepA, which can be also viewed as a basic step inside of a
corresponding iterative procedure, reads as follows:

1. Step of PSepA:

0. Solve the original problem (1) and obtain (u0h, p
0
h) that means (u0h, p

0
h)=NS−1(f).

1. Interpolate p0h into any higher-order finite element space, at least consisting of piecewise
linear, resp., bilinear functions, which leads to

psep,h := I (p0h)

2. Calculate the new finite element solution to the modified Navier–Stokes equations (3) with
f−∇ psep,h as the right-hand side:

(ũh, p̃h) :=NS−1(f−∇ psep,h)

3. Set the velocity uh = ũh and update the pressure ph :

ph = p0h+ p̃h

If the initial pressure p0h is obtained by solving the original Navier–Stokes equations with f as the
right-hand side, this almost doubles the CPU times. Alternatively, the computation of p0h can be
based on an approximation p2h , which is obtained in a hierarchical multigrid style on a coarser
mesh level 2h, for instance, or p0h can be directly obtained from a previous Newton-like step, which
is typically used in an outer loop for treating the nonlinearity. For a discussion of further variants
for computing psep,h , the reader is referred to [2]. Regarding the underlying finite element spaces,
in our case the nonconforming Stokes element Q̃1/Q0, the intermediate pressure psep,h is taken
as the linear interpolation of ph into conforming bilinear elements; we also used the interpolation
into the nonconforming space Q̃1, which, however, gives qualitatively similar results.

Regarding the application of pressure separation in the case of the nonstationary Navier–Stokes
equations with any time-stepping scheme, the same algorithm could be applied in each time step
separately, leading again to approximately doubling the CPU times as upper bound. However,
there is also the possibility of the following simplification that is based on the well-known idea of
extrapolating the pressure in time.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:387–403
DOI: 10.1002/fld



392 S. TUREK, A. OUAZZI AND J. HRON

1. Step of nonstationary pressure separation:

0. Given (un−1
h , pn−1

h ) as the solution from time step tn−1

1. Interpolate pn−1
h into any higher-order finite element space, at least consisting of piecewise

linear, resp., bilinear functions, which leads to

pnsep,h := I (pn−1
h )

2. Calculate the new finite element solution at time tn with ∇ pnsep,h as part of the modified
right-hand side:

(ũnh, p̃
n
h) :=NS−1(fn−∇ pnsep,h)

3. Set the velocity as unh = ũnh and update the pressure pnh :

pnh = pn−1
h + p̃nh

Remark
In step 2, we mean by ‘NS−1’ again the solution to a corresponding generalized stationary Navier–
Stokes problem at time step tn , which now depends on the chosen time stepping. In our case,
we assume a fully coupled, fully implicit approach that, however, can be easily extended to
pressure correction and pressure projection methods or other semi-implicit variants. Furthermore,
the approximative pressure pnsep,h can be easily taken as a higher-order extrapolation in time,

for instance, via pnsep,h = I (2pn−1
h − pn−2

h ) in the case of equidistant time steps, which should
lead to improved approximation properties due to higher temporal accuracy with almost the same
numerical effort.

3. NUMERICAL ANALYSIS

The goal of the following examples is to analyze numerically the improvement w.r.t. the resulting
accuracy of velocity and pressure using the proposed PSepA for several prototypical flow configura-
tions. Here, we restrict our studies to the shown ‘simple’ variants, which means that the subsequent
solution to two problems in the steady case and the constant extrapolation of pnsep,h = I (pn−1

h )

backwards in time, in order to show the potential of these approaches regarding the numerical
accuracy, not considering the related necessary aspects of numerical efficiency which in the steady
test cases can be roughly estimated by a factor of 2. However, it is obvious that there exist improved
techniques for calculating psep,h , which might further improve the numerical efficiency.

3.1. Analytical solution

The first example is a 2D test on the unit square for two different Reynolds numbers Re=1
and 1000 and analytically given velocity u=(u1,u2) and pressure p as defined by the following
polynomials:

u1(x, y) = 2x2(1−x2)(y(1− y)2− y2(1− y))

u2(x, y) = 2y2(1− y2)(x(1−x)2−x2(1−x))

p(x, y) = c(x3− y3−0.5)

(6)
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The constant c is varied to obtain the corresponding a priori error estimate in (2) which is
dominated by the pressure gradient and to see its impact on the accuracy of the computed solution.
The right-hand side f is chosen such that (u, p) satisfy the stationary Navier–Stokes equations for
the given Reynolds numbers. In Table I, we give the corresponding L2-norm and H1-norm of the
velocity error and the L2-norm for the pressure error on different mesh levels: ‘Level n’ denotes
the n-times equidistantly refined unit square. As expected, both the ‘high Reynolds number case’
and the increase in the absolute pressure values have directly influenced the computed velocity
error: Firstly, the error scales with the Reynolds number Re, and, secondly, the constant c increases
the error since the pressure magnitude and hence its gradient are scaled with c. However, both
dependencies influence the error only via the so-called error constant whereas the asymptotics
w.r.t. the mesh size h remains the same. Nevertheless, it is obvious that the velocity errors are
significantly improved by the PSepA (Table I).

Table I. Velocity errors due to ‖u−uh‖0 and |u−uh |1, and pressure error ‖p− ph‖0.
Without pressure separation With pressure separation

Level ‖u−uh‖0 |u−uh |1,h ‖p− ph‖0 ‖u−uh‖0 |u−uh |1,h ‖p− ph‖0
Re=1, c=1
4 0.01320627 0.21977997 0.0428970 0.00407523 0.07914281 0.0448510
5 0.00332730 0.11060943 0.0213872 0.00093228 0.03681914 0.0219279
6 0.00083443 0.05545565 0.0106808 0.00022132 0.01766485 0.0108244
7 0.00020887 0.02776021 0.0053380 5.3792E−05 0.00863829 0.0053753
8 5.2246E−05 0.01388741 0.0026686 1.3252E−05 0.00426955 0.0026781
9 1.3064E−05 0.00694537 0.0013342 3.2879E−06 0.00212224 0.0013366

Re=1, c=1000
4 10.7625546 173.711219 0.0428585 2.00796426 35.9718175 0.0449270
5 2.93779513 95.2942924 0.0213830 0.38075240 13.6844735 0.0219383
6 0.77022584 50.1414941 0.0106804 0.06983640 5.02810125 0.0108258
7 0.19738275 25.7520552 0.0053380 0.01258139 1.81319313 0.0053754
8 0.04997221 13.0541961 0.0026686 0.00224555 0.64752019 0.0026781
9 0.01257281 6.57264895 0.0013342 0.00039888 0.23009497 0.0013366

Re=1000, c=1
4 2.56237929 27.0587977 0.0427753 0.37903284 6.77388344 0.0453306
5 0.96556353 23.0817867 0.0213682 0.11457742 4.11517335 0.0220339
6 0.34447421 18.6515627 0.0106783 0.03155326 2.27133044 0.0108454
7 0.11699463 13.7212946 0.0053377 0.00775593 1.11769202 0.0053789
8 0.03685431 9.02403558 0.0026686 0.00171123 0.49209582 0.0026787
9 0.01063014 5.36395474 0.0013342 0.00054886 0.19847427 0.0013367

Re=1000, c=1000
4 264.699897 1185.01441 0.0433642 15.4317586 269.340443 0.0454205
5 147.874546 1122.20719 0.0214613 5.43204942 189.104707 0.0220733
6 76.8259785 1035.76326 0.0106911 1.83832538 131.945249 0.0108609
7 33.1379928 952.824272 0.0053391 0.63121919 90.9434163 0.0053842
8 10.6143169 891.529162 0.0026688 0.21236541 61.2296913 0.0026803
9 3.08294602 827.562355 0.0013343 0.06854484 39.5259910 0.0013371
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3.2. Driven cavity

Driven cavity flows represent a common standard benchmark for incompressible CFD codes
and therefore we also present corresponding results for different Reynolds numbers (see [17]
for a description of the problems settings). Furthermore, this problem seems to be an ideal test
configuration for the pressure separation since the solution is less regular, which is due to the
pressure singularity in the corner (since the velocity is discontinuous at the upper corners). Here,
we present results for the kinetic energy (1/2)

∫
� ‖u‖2dx as the benchmark quantity that also

has been used in [17, 18]. (Remark: So far, there is no reference solution for the considered Re
numbers in the literature; however, comparing with [17, 18] indicates that the reference values
behave approximately like 4.45−2 for Re=1000 and 4.74−2 for Re=5000.) We list in Table II
the values for the kinetic energy, for a regular mesh and for an adapted one near the corners

Table II. Driven cavity results for Re=1000 and 5000.

Energy

Level Cells Without pressure separation With pressure separation

Structured mesh
Re=1000
4 1024 4.255446720666505E−02 4.809523177616493E−02
5 4096 4.292753746090640E−02 4.582827797164316E−02
6 16384 4.354483303998137E−02 4.484310164052527E−02
7 65536 4.409022680894554E−02 4.459201173310999E−02
8 262144 4.436728290764166E−02 4.453541193883628E−02
9 1048576 4.447217597338023E−02 4.452227397784055E−02

Re=5000
4 1024 4.744206618103668E−02 6.178545053709494E−02
5 4096 4.542745327131271E−02 5.596863706593847E−02
6 16384 4.394207364279471E−02 5.019652320714556E−02
7 65536 4.462170416774443E−02 4.802028792765253E−02
8 262144 4.589567777376605E−02 4.754149961543417E−02
9 1048576 4.677138548602210E−02 4.745519215584770E−02

Unstructured mesh
Re=1000
4 3392 3.937830914695982E−02 4.258603278981851E−02
5 13568 4.200638598599166E−02 4.399538203747823E−02
6 54272 4.343367659646590E−02 4.442539201306887E−02
7 217088 4.410374815761506E−02 4.451194162495991E−02
8 868352 4.437769488742017E−02 4.452067552798117E−02
9 3473408 4.447552512831641E−02 4.451922842679222E−02

Re=5000
4 3392 3.694454761504827E−02 4.478929109363260E−02
5 13568 3.875516662905162E−02 4.519893868737240E−02
6 54272 4.160819937746986E−02 4.621377280452104E−02
7 217088 4.428310545723057E−02 4.712166739526875E−02
8 868352 4.596571822224903E−02 4.741444989451889E−02
9 3473408 4.683499558639783E−02 4.745377227286869E−02
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Figure 3. Two different coarse meshes for ‘driven cavity’.

(see Figure 3). As can be seen in Table II, almost grid-independent results are achieved for the
kinetic energy, at least for the PSepA approach. It is also seen that much better results can be
obtained on coarse meshes with pressure separation in comparison with the standard approach.

3.3. Flow around obstacles

Flow around obstacles of different shapes is another adequate configuration to analyze the effec-
tiveness of pressure separation not only w.r.t. the accuracy of the velocity but also regarding the
pressure since the quantities of interest are the lift Clift and the drag Cdrag coefficients

Clift=−C
∫
S

(
�
�vt
�n

nx + pny

)
ds, Cdrag=C

∫
S

(
�
�vt
�n

ny− pnx

)
ds (7)

where S is the contact line, resp., area of the obstacle with the fluid, and C is a scaling constant.
The computation of the surface integrals in (7) can also be obtained using related volume integrals
due to the weak formulations in FEM approaches. We consider functions vd ∈(H1(�))N and
vl ∈(H1(�))N with

vd|S =(e1,0)
T, vd|�̄−S =0 and vl|S =(0,e2)

T, vl|�̄−S =0 (8)

where ei is the i th component of the unity. Then, the corresponding expression using volume
integrals [19] reads

Clift = −C((�∇u,∇vl)−(p,∇ ·vl))
Cdrag = −C((�∇u,∇vd)−(p,∇ ·vd))

(9)

with (·, ·) denoting the inner product in (L2(�))N ,N =2,3. This problem corresponds to well-
known benchmark configurations and has been described in [14, 20]. Two different obstacles,
cylinders with circular and with square cross section, are considered in 2D and 3D. The coarse
meshes for the 2D case are shown in Figure 4, whereas the corresponding 3D coarse mesh is
derived from the 2D grid by extrusion in the z-direction with equidistant layers (Table III).

In the case of flow around a 2D cylinder, the solution is quite smooth and not dominated by
the pressure gradient, which seems to be the reason why the PSepA does not essentially improve
the solution quality, at least for the low Reynolds number cases Re=20 and 50. However, in the
3D case [19, 21], the pressure separation brings significantly more improvement to the solution,
particularly for the lift coefficient (see Table IV).
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Figure 4. Coarse meshes for the ‘flow around obstacle’ configurations in 2D.

Table III. Flow around a 2D cylinder.

Without pressure separation With pressure separation

Level Cells Cdrag Clift Cdrag Clift

Force
Re=20/reference values: Cdrag≈5.580,Clift≈0.0106
3 4264 0.56012E+01 0.96490E−02 0.56206E+01 0.10498E−01
4 16848 0.55803E+01 0.10143E−01 0.55703E+01 0.10350E−01
5 66976 0.55789E+01 0.10435E−01 0.55707E+01 0.10462E−01
6 267072 0.55793E+01 0.10559E−01 0.55747E+01 0.10548E−01
7 1066624 0.55795E+01 0.10601E−01 0.55771E+01 0.10588E−01
8 4263168 0.55795E+01 0.10614E−01 0.55783E+01 0.10605E−01

Re=50/reference values: Cdrag≈3.694,Clift≈−0.0107
3 4264 0.38109E+01 −0.11007E−01 0.38136E+01 −0.11184E−01
4 16848 0.37237E+01 −0.10959E−01 0.37041E+01 −0.11045E−01
5 66976 0.37013E+01 −0.10794E−01 0.36897E+01 −0.10860E−01
6 267072 0.36961E+01 −0.10749E−01 0.36908E+01 −0.10786E−01
7 1066624 0.36949E+01 −0.10741E−01 0.36925E+01 −0.10758E−01
8 4263168 0.36946E+01 −0.10739E−01 0.36935E+01 −0.10747E−01

Drag and lift coefficients with and without the pressure separation technique.

Table IV. Flow around a 3D cylinder.

Without pressure separation With pressure separation

Level Cells Cdrag Clift Cdrag Clift

Force
Reference values: Cdrag≈6.185,Clift≈0.00940
3 6144 0.59160E+01 −0.12441E−02 0.61155E+01 0.32743E−02
4 49152 0.61549E+01 0.47570E−02 0.61447E+01 0.80229E−02
5 393216 0.61829E+01 0.77422E−02 0.61602E+01 0.91252E−02
6 3145728 0.61861E+01 0.87470E−02 0.61721E+01 0.93316E−02

Lift and drag coefficients with and without the pressure separation technique for Re=20.

This situation changes completely in the case of the flow around the square, in 2D as well as
in 3D, which leads to pressure singularities near the corners of the interior square such that the
application of pressure separation is getting significantly more advantageous.

Finally, the nonstationary case of a periodically oscillating flow for a medium Reynolds number
is also considered and the results are plotted in Figure 5. For the 2D flow around a cylinder, the
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Figure 5. Lift coefficient for various mesh levels (‘L=2–4’) for Crank–Nicolson ‘CN’ as time-stepping
scheme with pressure separation ‘PS’ and without pressure separation ‘P0’.

Reynolds number is increased to Re=100, with the aim of examining the resulting effects. The
time discretization is based on the classical Crank–Nicolson method, and a fully coupled, fully
implicit treatment is used (see [14] for more details). In this nonstationary case, which means
the case of higher Re number, the PSepA clearly improves the solution for both lift amplitude
and frequency. However, since we perform the described constant extrapolation in time only, the
results are dependent on the actual time step size too. Hence, more numerical investigations are
required to explore the various described variants of the PSepA algorithms to check the numerical
behavior w.r.t. accuracy and efficiency.
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3.4. Static bubble

In the next step, we illustrate the robustness and efficiency of the PSepA and of the previously
described edge-oriented FEM stabilization in (5), for flows with interfaces, resp., free surfaces,
which naturally lead to large pressure derivatives. Owing to its simplicity, but nevertheless due to its
prototypical behavior for multiphase flow models, we consider a stationary bubble at equilibrium,
something that holds for the slow motion of a gas bubble in a viscoplastic fluid (for instance,
see [22]). Since the bubble is at rest, we should have a zero velocity field; unfortunately, most
numerical methods generate spurious currents, as, for instance, reported in [11, 12] (see also
Figure 2, Tables V and VI).

Table V. Flow around a 2D square.

Without pressure separation With pressure separation

Level Cells Cdrag Clift Cdrag Clift

Force
Re=20/reference values: Cdrag≈6.47,Clift≈0.0712
3 512 0.64522E+01 0.74753E−01 0.68402E+01 0.84024E−01
4 2048 0.63551E+01 0.70146E−01 0.65059E+01 0.73883E−01
5 8192 0.63864E+01 0.69694E−01 0.64587E+01 0.71458E−01
6 32768 0.64239E+01 0.70204E−01 0.64640E+01 0.71122E−01
7 131072 0.64463E+01 0.70646E−01 0.64705E+01 0.71153E−01
8 524288 0.64572E+01 0.70908E−01 0.64728E+01 0.71201E−01
9 2097152 0.64624E+01 0.71039E−01 0.64726E+01 0.71217E−01

Re=50/reference values: Cdrag≈4.14,Clift≈0.0239
3 512 0.43589E+01 0.31870E−01 0.45827E+01 0.38136E−01
4 2048 0.42174E+01 0.24908E−01 0.42779E+01 0.26107E−01
5 8192 0.41397E+01 0.23774E−01 0.41619E+01 0.24433E−01
6 32768 0.41223E+01 0.23730E−01 0.41385E+01 0.24202E−01
7 131072 0.41248E+01 0.23796E−01 0.41381E+01 0.24102E−01
8 524288 0.41296E+01 0.23830E−01 0.41396E+01 0.24012E−01
9 2097152 0.41328E+01 0.23846E−01 0.41399E+01 0.23951E−01

Drag and lift coefficients with and without the pressure separation technique.

Table VI. Flow around a 3D square.

Without pressure separation With pressure separation

Level Cells Cdrag Clift Cdrag Clift

Force
Reference values: Cdrag≈7.76,Clift≈0.0688
3 8192 0.76277E+01 0.38110E−01 0.77676E+01 0.52552E−01
4 65536 0.77550E+01 0.54334E−01 0.77247E+01 0.63255E−01
5 524288 0.77438E+01 0.63013E−01 0.77342E+01 0.67294E−01
6 4194304 0.77447E+01 0.67372E−01 0.77556E+01 0.68589E−01

Lift and drag coefficients with and without the pressure separation technique for Re=20.
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Figure 6. Adapted vs ‘simple’ mesh (both NEL=1600) on mesh level 4.

In our test case, for the Stokes equations and with exact curvature 1/r , we restrict the simulation
to the configuration proposed in [23, 24], which is a circular bubble with radius r =0.25 positioned
in the center of a unit square. The coefficient of surface tension � and all viscosities were set to
unity. Then, according to the Laplace–Young law, the pressure inside the bubble pi and the outside
pressure po satisfies

pi= po+�/r (10)

Two different meshes with identical number of mesh cells, and hence degrees of freedom, are
considered (see Figure 6), namely an equidistant and a locally adapted mesh by concentrating the
grid points in the vicinity of the interface where the pressure exhibits a discontinuity. Consequently,
the aligned mesh should resolve the interface in a much better way, while preserving the connectivity
of the grid topology for efficiency reasons. Tables VII and VIII show the resulting errors of the
velocity and pressure for the different methods, which will be discussed in the subsequent section
of this paper.

It is obvious that improved results using the PSepA are mainly obtained for the pressure on
the equidistant meshes, whereas on the locally aligned meshes no significant improvements using
PSepA are visible since the local alignment itself improves already the pressure error drastically.
Moreover, the improvement in the velocity error is almost negligible, particularly to eliminate the
spurious currents. Again, the velocity error is significantly improved by adapting the mesh towards
the interface using the grid deformation algorithm. Hence, the local grid alignment provides a more
precise approximation of the interface, and correspondingly much better results for the pressure,
and also for the velocity, are shown in Table VIII. However, the limitation of pressure separation to
improve the spurious velocity modes remains: Neither pressure separation nor the grid deformation
is able to eliminate totally the spurious velocity.

This is in contrast to the additional (local) stabilization of the momentum equations using the
described edge-oriented FEM approach for this type of problems: The results for the velocity
improve dramatically, and the error seems to be proportionally decreasing with the order of the
mesh-dependent penalty parameter. As a main result, the spurious velocity currents are significantly
diminished for both types of meshes. Moreover, increasing the magnitude of the (globally defined)
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Table VII. Equidistant mesh.

Without pressure separation With pressure separation

Level |pi − po|/( �
r ) ‖u−uh‖0 |u−uh |1,h NL/MG |pi − po|/( �

r ) ‖u−uh‖0 |u−uh |1,h NL/MG

Without edge-oriented FEM
4 0.954349 0.002608 0.207652 5/1 0.992366 0.001552 0.118638 5/1
5 0.979682 0.000971 0.153784 5/1 0.997579 0.000607 0.091726 5/1
6 0.992961 0.000362 0.112884 4/1 1.001254 0.000237 0.069493 4/1
7 0.997166 0.000138 0.082118 4/1 1.001094 0.000097 0.051485 4/1

With global edge-oriented FEM with penalty parameter �=10
4 0.9520738 3.33E−05 0.002560 6/1 0.989788 2.47E−05 0.001871 6/1
5 0.9792187 1.21E−05 0.001819 5/1 0.997226 9.97E−06 0.001452 5/1
6 0.9926422 4.71E−06 0.001406 5/1 1.001089 3.86E−06 0.001126 5/1
7 0.9966825 1.72E−06 0.001030 4/1 1.000645 1.37E−06 0.000801 4/1

With global edge-oriented FEM with penalty parameter �=1000
4 0.951998 3.38E−07 2.60E−05 6/1 0.988809 2.20E−07 1.64E−05 6/1
5 0.979198 1.23E−07 1.84E−05 5/1 0.997101 8.06E−08 1.16E−05 5/1
6 0.992635 4.78E−08 1.42E−05 5/1 1.001279 3.21E−08 9.07E−06 5/1
7 0.996678 1.75E−08 1.04E−05 4/1 1.000998 1.25E−08 6.46E−06 4/1

With edge-oriented FEM with local penalty parameter � as a function of the distance to the interface
4 0.949683 3.61E−07 2.68E−05 6/1 0.986366 2.40E−07 1.75E−05 6/1
5 0.978834 1.19E−07 1.73E−05 5/1 0.996440 9.04E−08 1.25E−05 5/1
6 0.992673 4.75E−08 1.31E−05 5/1 1.000876 3.74E−08 9.68E−06 5/1
7 0.996931 2.01E−08 9.56E−06 4/1 1.000757 1.67E−08 6.85E−06 4/1

Errors of pressure and velocity as well as total number of nonlinear iterations and averaged number of multigrid
steps per nonlinear iteration (NL/MG) to gain 1 digit.

mesh-dependent penalty parameter does not degrade the performance of the nonlinear, resp., linear,
solvers.

Taking into account our previous studies for edge-oriented FEM stabilization [13, 16], in the
next step the mesh-dependent penalty parameter is defined not only as a global constant but also
as a local function, which takes into account the position of the interface (compare with (5))

∑
edge E

max(��hE ,�∗h2E ,�dist f (dist(�);hE )hE )

∫
E
[∇u] : [∇v]ds

with a sufficiently large constant �dist
0, a distance function dist(�) w.r.t. the interface, and f
defined as a variant of the Dirac function. Since for problems with free interfaces, the numerical
perturbations occur in most cases around the interface, there a high value of the mesh-dependent
penalty parameter is required. Away from the interface, the parameters should be designed so
that the penalty parameter remains in accordance with the older settings as explained before.
Therefore, the mesh-dependent penalty function was defined to be inversely proportional to the
distance, which can be obtained, for instance, using a standard level set function as a global distant
measure. However, these settings require much more and careful numerical analysis, in particular,
in combination with FEM level set techniques for free interface, resp., surface problems, which
will be addressed in a forthcoming paper.
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Table VIII. Aligned mesh.

Without pressure separation With pressure separation

Level |pi − po|/( �
r ) ‖u−uh‖0 |u−uh |1,h NL/MG |pi − po|/( �

r ) ‖u−uh‖0 |u−uh |1,h NL/MG

Without edge-oriented FEM
4 1.000669 1.89E−04 0.097654 6/1 1.001900 1.74E−04 0.041707 6/1
5 1.000135 3.50E−05 0.057960 5/1 1.000983 5.67E−05 0.032685 5/1
6 1.000032 6.62E−06 0.037825 4/1 1.000322 1.89E−05 0.023153 3/1
7 1.000000 2.25E−06 0.028948 4/1 1.000140 6.48E−06 0.016411 4/1

With global edge-oriented FEM with the penalty parameter �=10
4 1.000719 1.87E−05 0.004474 5/1 1.000829 1.55E−05 0.003341 5/1
5 1.000336 4.21E−06 0.002285 4/2 1.000513 5.34E−06 0.002529 4/2
6 1.000109 1.66E−06 0.001819 4/2 1.000136 2.05E−06 0.002013 4/2
7 1.000040 5.36E−07 0.001158 4/2 1.000044 6.51E−07 0.001282 4/2

With global edge-oriented FEM with the penalty parameter �=1000
4 1.000712 2.18E−07 5.11E−05 5/1 1.000650 1.81E−07 3.81E−05 5/1
5 1.000347 5.25E−08 2.71E−05 4/2 1.000465 6.21E−08 2.86E−05 4/2
6 1.000113 2.13E−08 2.19E−05 4/2 1.000119 2.43E−08 2.30E−05 4/2
7 1.000043 6.80E−09 1.37E−05 4/2 1.000035 7.65E−09 1.45E−05 4/2

With edge-oriented FEM with local penalty parameter � as a function of the distance to the interface
4 1.000599 5.22E−07 1.08E−04 6/1 1.000828 4.95E−07 8.88E−05 5/1
5 1.000277 1.99E−07 8.52E−05 4/2 1.000061 1.72E−07 6.96E−05 4/2
6 0.999927 7.07E−08 6.24E−05 5/2 0.999786 7.31E−08 5.87E−05 5/2
7 1.000017 2.60E−08 4.29E−05 4/2 0.999927 2.46E−08 3.81E−05 4/2

Errors of pressure and velocity as well as total number of nonlinear iterations and averaged number of multigrid
steps per nonlinear iteration (NL/MG) to gain 1 digit.

4. CONCLUSION

In this paper we have dealt with the new class of pressure separation algorithms (PSepA) for
incompressible flow problems, which may essentially improve the obtained approximation prop-
erties of velocity and pressure in such cases where high-pressure derivatives together with small
viscosity parameters are dominating the a priori error estimate. We extended this concept, which
has been recently described in [2] (see also [1] for the ‘oldest’ description), by several algorithmic
concepts, and we provided extensive numerical studies in prototypical flow settings. In particular,
for configurations with large pressure gradients due to the geometry or the applied boundary condi-
tions, the theoretical results are confirmed using the resulting numerical tests, for 2D as well as 3D
configurations with steady and time-dependent flow behavior. Moreover, we investigated numeri-
cally a problem that is prototypical for free interface, resp., multiphase problems where pressure
discontinuities and also spurious velocities arise. Although PSepA can essentially improve the
pressure approximation, the combination with edge-oriented FEM stabilization seems to eliminate
the spurious currents, (almost) independent of the mesh resolution. In this case, the edge-oriented
FEM stabilization is applied with a global as well as a local mesh-dependent penalty parameter,
which leads to very promising results.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:387–403
DOI: 10.1002/fld



402 S. TUREK, A. OUAZZI AND J. HRON

It is clear that further investigation is necessary to examine some different variations of the
PSepA, particularly w.r.t. higher-order finite element spaces or other discretization types, for
instance, in the finite volume setting. Moreover, the application of the examined special edge-
oriented FEM stabilization to general multiphase problems in conjunction with local mesh adapta-
tion and its interplay with dynamic effects have to be numerically studied and analyzed in future.
However, the presented results for the pressure separation algorithms are very promising due to their
simplicity and efficiency and also due to their high flexibility regarding very different discretization
and solver types, such that much more extensive tests for more realistic flow situations should be
performed as soon as possible.
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1. Schieweck F. Parallele Lösung der stationären inkompressiblen Navier–Stokes Gleichungen. Otto-von-Guericke-
Universität Magdeburg, Fakultät für Mathematik, 1997 (Habilitation).

2. Ganesan S, John V. Pressure separation: a technique for improving the velocity error in finite element discretisations
of the Navier–Stokes equations. Applied Mathematics and Computation 2005; 165:275–290.

3. Girault V, Raviart PA. Finite Element Methods for Navier–Stokes Equations. Springer: Berlin, Heidelberg, 1986.
4. Liu J-G, Liu J, Pego RL. Divorcing pressure from viscosity in incompressible Navier–Stokes dynamics. Preprint

CSCAMM-05-01, University of Maryland, 2005.
5. Dorok O. Improved accuracy of a finite element discretization for solving the Boussinesq approximation of

the Navier–Stokes equations. Numerical Modelling in Continuum Mechanics (Theory, Algorithms, Applications),
Prague, 22–25 August 1994.

6. Dorok O. Eine stabilisierte Finite-Elemente-Methode zur Lösung der Boussinesq-Approximation der Navier–
Stokes–Gleichungen. Ph.D. Thesis, Otto-von-Guericke-Universität, 1995.

7. Dorok O, Grambow W, Tobiska L. Aspects of finite element discretizations for solving the Boussinesq
approximations. Preprint Math 5/94, Otto-von-Guericke-Universität Magdeburg, 1994.

8. Gerbeau JF, Le Bris C, Bercovier M. Spurious velocities in the steady flow of an incompressible fluid subjected
to external forces. International Journal for Numerical Methods in Fluids 1997; 25:679–695.

9. Marianne MF, Sharen JC, Edward DD, Douglas BK, James MS, Matthew WW. A balanced-force algorithm
for continuous and sharp interfacial surface tension models within a volume tracking framework. Journal of
Computational Physics 2006; 213:141–173.

10. Popinet S, Zaleski S. A front-tracking algorithm for accurate representation of surface tension. International
Journal for Numerical Methods in Fluids 1999; 30:775–793.

11. Shirani E, Ashgriz N, Mostaghimi JE. Interface pressure calculation based on conservation of momentum for
front capturing methods. Journal of Computational Physics 2005; 203:154–175.

12. Ganesan S, Matthies G, Tobiska L. On spurious velocities in incompressible flow problems with interfaces.
Computer Methods in Applied Mechanics and Engineering 2007; 196:1193–1202.

13. Turek S, Ouazzi A. Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems:
numerical investigations. Journal of Numerical Mathematics 2007; 15:299–322.

14. Turek S. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach.
Lecture Notes in Computational Science and Engineering, vol. 6. Springer: Berlin, 1999.

15. Burman E, Hansbo P. A stabilized non-conforming finite element method for incompressible flow. Computer
Methods in Applied Mechanics and Engineering 2006; 195:2881–2899.

16. Ouazzi A. Finite Element Simulation of Nonlinear Fluids. Application to Granular Material and Powder. Shaker
Verlag: Aachen, Germany, 2006. ISBN: 3-8322-5201-0.

17. Bruneau C, Saad M. The 2D lid-driven cavity problem revisited. Computers and Fluids 2006; 35:326–348.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:387–403
DOI: 10.1002/fld



PRESSURE SEPARATION ALGORITHMS 403

18. Kalita JC, Shuvam S. The (9,5) HOC formulation for the transient Navier–Stokes equations in primitive variable.
International Journal for Numerical Methods in Fluids 2007; 55:387–406.

19. John V. Higher order finite element methods and multigrid solvers in a benchmark problem for the 3-D
Navier–Stokes equations. International Journal for Numerical Methods in Fluids 2002; 40:775–798.
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